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We computed the specific heat of directed lattice animals using a Monte Carlo 
method for various animals sizes N, with N up to 100 on the square and N up 
to 125 on the simple cubic lattices. The specific heat as a function of the tem- 
perature for various animal sizes exhibits peaks which seem to approach a 
collapse transition temperature monotonically from below with increasing N. A 
least square fit together with finite-size scaling then gives both the transition 
temperature T~ and the specific heat exponent c~ for these two lattices. The 
cyclomatic number distributions for the number of animals with fixed animal 
size N are also calculated and these seem to obey a scaling law for large N. 

KEY W O R D S :  Collapse transition; directed lattice animals. 

1. I N T R O D U C T I O N  

Connected clusters of occupied sites or lattice animals have been very well 
studied because of their relation to branched polymers and percolation 
theory. (1) The colapse transition of these large clusters has recently been 
studied by introducing attractive interaction between particles within the 
animals.C2 41 The attraction favors compact forms for the animals, while 
entropy works in the opposite direction to give ramified structures. This 
competition results in a collapse transition at a temperature T c. The 
collapse transition in normal lattice animals had been studied by Derrida 
and Herrmann (2) in two dimensions using a transfer matrix method. They 
obtained both the transition temperature and the exponent for some two- 
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dimensional lattices. Dickman and Schieve (3'4) studied the same problem 
using a Monte Carlo method for some two- and three-dimensional lattices. 
In two dimensions they obtained transition temperatures in close 
agreement with those of Derrida and Herrmann. They were not able, 
however, to determine the exponent. 

A new version of the animal problem is the directed lattice animal 
problem(5 8) in which the elements (sites or bonds) are forbidden to grow 
against certain preferred directions in the lattice. The introduction of these 
preferred directions changes the universality class of the model. As far as 
we know, the collapse transition for these directed animals has not yet been 
studied. The purpose of this paper is to perform such studies for two- and 
three-dimensional lattices. We will show that the collapse transition 
problem in two dimensions is related to the directed percolation problem. 

Thermal properties of lattice animals may be derived from the 
partition function 

ZN = ~ AN(B) e B/r (1) 
B 

in which A'N(B) is the number of animals of size N with B nearest neighbor 
bonds and T is the absolute temperature. We have expressed the energy in 
units such that e/k8 = 1, where e is the nearest neighbor attractive potential 
and ke is Boltzmann's constant. Using Euler's relation B-- N + C -  1, with 
C the number of cycles in the animal, we can rewrite Eq. (1) as 

M(N)  

ZN=e(N 1)/T 2 AN(C) ec/T (2) 
C 

where AN(C ) is the number of animals with exactly C cycles and M(N) is 
the maximum number of cycles in animals of size N. For the suqare lattice, 
M(N) = [2 (N-x / -N) ]  - N +  1 and for the simple cubic lattice 

M(N) = [3(N-N2/3)]  - N 

+ {•(N, L3)+6(N, L2(L+ 1)) + 6(N, ( L +  1)2L)} 

where the square brackets denote the largest integer of their arguments, 6 is 
the Kronecker g-function, and L is an integer. The Monte Carlo technique 
used by Dickman and Schieve ~3) is modified and applied here to the 
directed problem. In this method, the ratios rN(C ) = AN(C)/AN(C+ l )  for 
successive, nonzero values of AN(C ) a r e  estimated for fixed animal size N. 
In this way we have also calculated estimates for the cyclomatic number 
distribution PN(C) for animals of size N defined as 

M(N)  

PN(C)=AN(C) ~ AN(C) (3) 
C 
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Our numerical data for PN(C) suggest that PN(C) satisfies scaling law in 
both two and three dimensions. For  fixed C, AN(C) behaves asymptotically 
for large N as (9 11) 

A N ( C  ) = 6 c , ~ N N  c' o (4) 

where 2o is a lattice-dependent growth parameter for lattice trees or zero 
cycle animals, ~9 is a universal exponent, and ac  is an amplitude factor 
depending on C. Our estimates for rN(C ) also allow us to investigate the 
amplitude factors ~c. The result strongly suggests that for both the square 
and simple cubic lattices, the amplitude factors for different cycles are 
simply related. 

2. M O N T E  CARLO M E T H O D  FOR E S T I M A T I N G  
THE N U M B E R  OF DIRECTED A N I M A L S  

In this section we review briefly the method of Dickman and Schieve (3t 
specialized to the directed animal problem. In this method one starts 
initially with a connected cluster of fixed size N connected to the site at the 
origin. One then generates different configurations of connected clusters of 
the same size N by removing randomly any of the N - 1  sites, with the 
exception of the site at the origin, and attaching it at a randomly chosen 
unoccupied perimeter site, which in the directed case is an unoccupied suc- 
cessor to an occupied site. This unoccupied perimeter site is to be chosen at 
random from among the successor sites of a randomly selected occupied 
site. During this process one checks every time that the cluster does not 
break up into two or more disconnected clusters. Similar methods were 
used by Peters eta/. (12) and Duarte (13) to generate lattice animals and 
lattice trees in the infinite-temperature limit. 

In the case of directed animals, the connectivity constraint is easy to 
check. One has only to check that after the randomly chosen site is 
removed and attached to a randomly chosen perimeter site, all the suc- 
cessor sites of the removed site (in a fully directed d-dimensional hyper- 
cubic lattice there are most d such successor sites) are connected to at least 
one predecessor site. If the removed site has no successor site, then the 
removed site lies at the surface of the cluster and can always be removed 
and attached somewhere else without violating the connectivity constraint. 
After this new cluster configuration has passed the connectivity test, it is 
accepted with a probability p determined in the following way. Let x be the 
position of the site to be removed and x* be the position of the site to be 
occupied. We denote the new configuration F'  to be the one in which x* is 
occupied and x is empty and the old configuration F as the reversed 
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situation. One determines in the new configuration U the number of 
predecessors np of x and the number of bonds n~ (i.e., the sum of the 
number of predecessor an successor sites) of x* and similarly in the old 
configuration F the number of predecessors np of X* and the number of 
bonds nb of x. If n~ is greater than or equal to rib, the new configuration is 
accepted with probability p=n'p/np. Otherwise it is accepted with 
probability p = exp[ (n~-nb) /T] ,  where T is the temperature. It is easy to 
show that this choice of p gives the transition probability R(F-~U)  
satisfying detailed balance. 

Consider the transition probability from the old configuration F to the 
new configuration/".  In the old configuration F, the probability of choos- 
ing x from among N -  1 occupied sites is ( N -  1 )-1 and the probability for 
choosing another occupied site, say y, from which the perimeter site x* is 
to be chosen, from among N occupied sites is N-1. Since in the old con- 
figuration F the number of predecessor sites of x* is np, the probability for 
choosing x* from y is just 2np/q, where q is the coordination number of the 
lattice, the factor two entering because we are considering directed animals. 
With our above choice of p, the transition probability R(F-~ F') is given 
by 

~ 2np(np/np)/qN(N- 1), 
R(F-* F')= ~2np exp[- (n~, - n b ) / T ] / q N ( N -  

n'b >1 nb (sa) 
1), n'b <n b 

Similarly, the reversed probability R(F'-~ F) is given by 

R(F' -~ F) = {2n'p(np/n'p)/qN(N 1), 

2np exp[(n b - n'b)/T]/qN(U- 1 ), 

Therefore, for n~ ~> nb, 

(5b) 

R(F -~ F') = 2n'p/qN(N- 1) 

R(r' -~ r) = 2n'p exp[(nb - n'b)/T]/qN(N- 1) 

This implies that for n~ > nb, 

R(F-~ F') exp(--n'b/T) = R(F' -+ F) exp(--nb/T) 

Exactly the same result is obtained for n~ < nb. This shows that R(F-~ F') 
satisfies detailed balance. An unbiased estimate of the ratio AN(C)/Au(C') 
is then given by e x p [ ( C ' - C ) / T ] Y c / Y c ,  where Yc is the number of 
realizations of C cycle animals. For large animals, e.g., N = 64 or N = t00 
in the square lattice, animals with small C are generated only with suf- 
ficiently large T and those with very large C are generated only with suf- 
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ficiently small T. Therefore one has to use several different temperatures 
(four or five) in order to generate animals with cycle numbers ranging all 
the way from C = 0 to C = M(N), the maximum allowed number  of cycles 
for animals of size N. For  each temperature we make over 100 million trials 
at generating new configurations starting from an initial connected cluster. 
An accepted configuration is called an event. The number  of events may be 
of order 10 million for T not too low. For  lower T, the number  of events 
can be considerably smaller. At the start of each run 10 or 20 million trials 
are allowed for relaxation. For  N~< 16 on the square and N~< 12 on the 
simple cubic lattices, we have checked that our Monte Carlo data agree 
excellently with exact results. (14~ 

3. L A T T I C E  A N I M A L  S P E C I F I C  H E A T S  

The specific heat per particle in an N-particle animal is 

C~, = ( ( B  2) - ( B)2) /NT 2 ~ ( T -  Tc)-" (6) 

where 

( B n ) = ZN 1 ~ BriAN(B) eB/T 
B 

and A'u(B) is the number of animals of size N with B bonds. If AN(C ) 4 0 ,  
VC<M(N) ,  then defining rx(C ) ==-AN(C)/AN(C+ 1), we can write ZN as 

Z N = e (N 1)/TAN(O ) {1 + el/r/rN(O) + e2/r/rx(O) rN(1) + ""  

M(N) 1 } 
+ I~ [el/T/ru(C)] (7) 

C=0 

and similarly for (Bn>, 

I M(N)- 1 ~I t <Bn> = ( N - l ) " +  ~ (N+C)"  Ee'/T/ru(j)] 
C=0 j=0 

x 1 + ~ [el/r/ru(j)] (8) 
C=0 j=0 

For  the square lattice we find that AN(C)=/=O , VC<~M(N). We have 
calculated ru(C ) using the Monte  Carlo method of the last section, for 
N = 2 5 ,  36, 64, 100. The specific heat of directed square lattice animals 
obtained using (6) and (8) is plotted as a function of T i n  Fig. 1 for various 
sizes N. The result for N =  16 is exact. F rom Fig. 1 we see that besides the 
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Fig. 1. 
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Specific heat C,, against temperature T for various animal sizes N on the square 

lattice. 

subsidiary peak at low temperatures, the specific heat also exhibits a 
strong, fairly broad peak at a higher temperature. We identify this as the 
collapse point Tm(N) for directed animals of finite size N. As the size N of 
the animals increases, the temperature Tm(N) at which the specific heat 
attains its maximum shifts toward higher temperatures and the peak grows 
higher and sharper. For  the square lattice, with N =  100, TIn(N)=0.68. 
From finite size scaling (~5/we know that T,n(N) scales as 

Tm(N ) = T , -  aN -~ (9) 

with a crossover exponent ~b. We have used our data Tm(16)=0.45, 
Tin(25) = 0.52, Tin(36) = 0.60, Tin(64) = 0.65, and Tm(100) = 0.68 in a least 
square fit to determine the three parameters T,, ~b, and a in (9). We find 
T, = 0.77 and ~b = 0.702. In Fig. 2 we plot Tm(N) versus N -r for directed 
square lattice animals, using the crossover exponent value ~b = 0.702. We 
see that the data fall fairly well on a straight line, confirming finite-size 
scaling theory. Our values for Tc are somewhat higher than the normal, 
undirected lattice animal value Te = 0.535, but the crossover exponent is 
not essentially different from the corresponding, normal animal value of 
q~ = 0 . 6 5 7 .  (2) The specific heat exponent ~ can be related to the crossover 
exponent ~b as follows. (2) If the thermal correlation length ~r  of directed 
lattice animals near the collapse point goes as 

~ T ~ [ T - T ~ [  v2 (10) 
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Fig. 2. Variation of T,,,(N) with size for square lattice animals. The straight line is obtained 
by a least square fit. 

with an exponent  v2, then the free energy per particle f is given by 

f ~ ~T a~ I T -  T~.] a'2 (11) 

where 3 is the fractal d imension of the directed lattice animals  at the 
collapse point.  F r o m  (11) it follows that  the free energy f also has the 
exponent  2 -  ~. Therefore  we have 

67V2 = 2 - - ~  (12) 

If we assume that  at the collapse point  the radius of  gyra t ion  exponent  of  
directed lattice animals  is v I (i.e., we do not  have to distinguish between 
parallel and t ransverse exponents  v[] and v• at the collapse point,  in 
contras t  to the case for inf ini te- temperature  directed lattice animals) ,  we 
have 67= 1/v 1 and 

= 2 - v2 /v  I = 2 - 1/~b (13) 

with ~b = v l / v  2, the same crossover  exponent  in (9). 
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For the simple cubic lattice with N = L 3, where L is an integer, we find 
that A N(M(N) - 1 ) -= 0 for all the N values we have investigated. Since then 
ru(M(N )- 2) is not defined, we have to modify (8) to 

M(N)-- 3 C 
( B " ) =  ( N - I ) " +  ~ (N+C)" [-I [e~lr/ru(J)] 

C~0 j=0  
M(N)- 3 

+[N+M(N)-I]" L cH=o ellr/rN(C)] e21r/ru} 
M ( N )  - 3 C 

• l+ Z F[ 
C=O j~0 

FM(N) - -3  -] } - 1  

+L e'/'Ir..(C)J.'/F.;. (8') 
where 

rN =-- AN(M(N)  - 2)IA N(M(N) )  (14)  

The specific heat of a simple cubic directed lattice animal obtained using 
(6) and (8') [except for N = 9 6 ,  where we still use (8)] is plotted as a 
function of T in Fig. 3 for N =  27, 64, 96, and 125. We find the main peak 
of the specific heat at T~(27)=0.45, Tm(64)=0.83, Tm(96)=0.89, and 
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Fig. 4. Same as Fig. 2, but for the simple cubic lattice. 
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Tm(125)=0.93. For N = 2 7  we have taken the main peak to be at the 
inflection point. We observe that T,~(N) increases monotinically with N, 
i.e., the collapse point To is approached from below. The peaks also 
become sharper with increasing N. Using (9), we have estimated T c, and ~b 
with a least square fit: Tc = 0.984, ~b = 1.4. Using (13), this corresponds to a 
specific heat exponent c~ = 1.286. In Fig. 4 we plot TIn(N) as a function of 
N -~, with ~b = 1.4. The data fall reasonably well on a straight line, again 
confirming finite-size scaling theory. 

4. C Y C L O M A T I C  N U M B E R  D I S T R I B U T I O N  

The cyclomatic number distribution defined in (3) can be written in 
terms of the rN(C ) when AN(C ) r V C ~ M ( N ) ,  as 

Pjv(C)= 1+ ~ l~ r u ( j ) +  ~ I~ ru(J) -~ , O < C < M ( N )  
C'=O j = C '  C ' = C  j = c  

(15) 

In the case of the simple cubic lattice, A N ( M ( N ) - I ) = O  when N = L  3, 
where L is an integer. Then (15) is modified to 

C - - I  C - - 1  M ( N ) - - 2  C ' - - I  

PN(C)= 1+ Z 1-[ rN(j)+ Z I-[ rN(j)--' 
C'=O j = C '  C ' = C  j = C  

+ ~ rN(j) 1 r'N -1 , O < C < M ( N )  (15') 
t_ / = C  
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where r~v is defined in (14). We have calculated PN(C) for directed lattice 
animals on both the square and the simple cubic lattices using (15) or 
(15'). The result is most  conveniently presented in terms of the quantity 

Q N( X) = log P N( C)/log P N( M( N) ) 

as a function of the variable X=-C/M(N). Figures 5 and 6 show the 
quantity QN(X) as a function of X for the square and simple cubic lattices, 
respectively. From these figures, we notice that there is evidence of 
approximate scaling as observed by Dickman and Schieve ~ for 
undirected lattice animals. From (3), since AN(C ) can be written as 

C 1 
AN(C)=Ajv(O) I-[ rjv(j)-' (16) 

j=o 

we see that the errors in PN(C) increase with C: Let Arj be the statistical 
error in ru(j); then 

C 1 I C--t ]C- -1  
l-] [rN(j) +ArJ] 1~ 1-- ~, drHrN(j) H rN(j) 1 (17) 
/=0 j=O j=O 
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1 

tO 

We have in our calculation Ab/rN(j)~ 0.01. At X =  1, QN(X) is normalized 
to 1 for all N. For  small X we see from Figs. 5 and 6 that there is very good 
scaling behavior. For  X between 0.5 and 0.9 the scaling behavior is not so 
good. But then the error bars in this region are also larger, so that the data 
are not inconsistent even with the conjecture of an exact scaling behavior 
for all X at large N. 

For  fixed cycle number  C it is known (9 11) that AN(C ) has the follow- 
ing asymptotic behavior for large N: 

AN(C)=acZNNC O, N>>I (18) 

where a c is a cycle-dependent amplitude factor, 2 o is the growth parameter  
for lattice trees, i.e., C =  0 lattice animals, and 0 is a universal exponent. 
From (18) we see that the ratio of successive amplitude factors ~c/C~c+l 
can be obtained from 

(T c/Oc + 1 = NA N( C)/A N( C + 1 ) = Nr N( C ) (19) 

In Figs. 7 and 8 we plot the successive ratios NAN(C)/AN(C+ 1) for the 
square and simple cubic lattices, respectively, as a function of C. These two 

822/49/1-2-17 
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Fig. 7. 
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Ratio NAN(C)/AN(C+ 1) of the number of directed animals with fixed size N but 
successive cycle numbers C and C + l as a function of C for the square lattice. 

figures strongly suggest the following relation between ratios of the 
successive ampli tude factors ac/ac+ 1" 

-ac/ac+l +ac+l/~c+2=K (20) 

where K is a constant.  We find K ~  10 for the square and K ~  9 for the 
simple cubic lattices, respectively. In  the following we will give a justifi- 
cat ion for relation (20). As a consequence of  (20), we have 

C - - I  OC~---O'O(0I/O'o)C/ j~=l (l +jKal/aO) ( 2 1 )  

with ( a l / a o ) ~  1/14 for the square and ( a l / a o ) ~  1/11 for the simple cubic 
lattices, taken from Figs. 7 and 8. If we sum (18) over all cycles C, we 
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obtain the total number of animals of size N, A N, which has the asymptotic 
behavior at large N: 

A N = ~r2UN- 0 (22) 

where 2 is the growth parameter for the total number of directed lattice 
animals and 3 is the same universal exponent as in (18). We have therefore 
the equation 

(Cro/a)(1 + Nail{to + N2o-2/O-o + . . .  + NM(N}tYM(N)/tYO) ~- ()~/~0) N (23) 

In the limit N ~  oo, the left-hand side of (23) must tend toward an 
exponential function exp(aN), with a=log(2 /2o)  and Cro=a. If we 
substitute (21) into (23), we have 

M(N) C 
( )~/'~'O)x= 2 (Uai/ao)c/C! 1-] n [ l+(n - -1 )Ka~ /ao] - :  (24) 

C = O  n - - 1  

Now since Kal/C%~ 1, we have for n large, 

n i l  + (n - 1) Kal/ao] -: ..~ (Kal/ao)-i 
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Therefore (2) becomes 

M(N) 

( ~/~O)N "~" 2 (N /K)C/C!  ~ e x p ( N / K )  (25) 
C = 0  

with K -1 =1og(2/2o). For  the square lattice we have the exact result 
2 =  3, (4'5) and the very accurate result 2o=2.71261 from transfer matrix 
calculation. (7) We have therefore in this case log(2/20)= 0.1, in very good 
agreement with our square lattice result K ~  10. Actually, (20) seems to be 
correct also for normal undirected lattice animals. (16) A particular solution 
of (20) is the Poisson distribution a c  = ao/ (KCC!) .  Substituting this into 
(18) and summing over all C, up to C = M ( N ) ,  we obtain, in the limit 
N--* o% again K - ~ =  log(2/20). Equation (21) reduces to the above Poisson 
distribution if a0 = Kay. But in general (20) alone does not give such a 
relation between al and ao. 

5. RELATION TO D I R E C T E D  P E R C O L A T I O N  
IN T W O  D I M E N S I O N S  

We have been informed by Dhar  (17) of a relation between the collapse 
transition of directed lattice animals and directed bond percolation in two 
dimensions. Consider directed bond percolation on a square lattice. It is 
easy to see that if p is the bond occupation probability, then the 
probability of generating a cluster is 

qtpm(1 _ q2)n = qtpm(2pq __ p2) ,  

where q -  1 -- p, t is the number of perimeter bonds, m is the number of 
sites with one predecessor, and n is the number of sites with two 
predecessors. But m = N - C ,  n =  C, and t = N - C +  1, where N is the 
number of sites and C is the number of loops in the cluster. Therefore the 
probability of generating a cluster is given by 

qN-- C + lpN-- C(2pq _ p2)C ~ [(2pq - p2) /pq]  c 

Comparing with (2), we have 

e l /r  = (2pq - pZ)/pq = (1 + q)/q 

The critical points of the square lattice directed percolation problem are 
qc= 1, 0.3553, and 0. (8) The first corresponds to the empty lattice, the 
second corresponds to the percolation threshold, and the third corresponds 
to the compact lattice. For  qc--0.3553 we have T c = 0.747, in reasonable 
agreement with our square lattice result. At qc=0 ,  To=0 .  This 
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corresponds to the appearance of the subsidiary peak shown in Fig. 1. This 
peak seems to shift toward To = 0 as N increases. It presumably describes 
the roughening transition, as discussed by Dickman and Schieve for 
normal, undirected lattice animalsJ 3) This conjecture is supported by the 
following arguments. First, the roughening transition in two-dimensional 
systems does occur at T =  0, just as observed here. Second, the subsidiary 
peak is present only for N = L 2, with L an integer in the square lattice. This 
can be understood by observing that when N r L 2 on the square lattice, the 
maximally bonded state is degenerate and has steps on the surface, so that 
in effect the surface is already somewhat rough even at T =  0. For  the sim- 
ple cubic lattice the subsidiary peak is present either when N =  L 3 or when 
N is such that the maximally bonded state is in the form of a parallelepiped 
(a matchbox shape), e.g., in our case when N =  96. But the subsidiary peak 
for the simple cubic lattice fluctuates around a finite temperature T ~  0.2 as 
the size N increases. The roughening transition, if such is the case, now 
occurs at a finite temperature for the simple cubic lattice. 

6. C O N C L U S I O N  

We have calculated the collapse transition temperature and specific 
heat exponents for the directed lattice animals on the square and simple 
cubic lattices. In addition, the cyclomatic number distributions were also 
calculated for these two lattices. They seem to obey a scaling law for large 
N. We have also shown the relation of the collapse transition in directed 
lattice animals to directed percolation in two dimensions. This yields a 
collapse transition temperature in close agreement with our Monte Carlo 
result and presumably also a roughening transition at T- -0 ,  which is also 
in agreement with the behavior of the subsidiary peak in our Monte Carlo 
specific heat data for the square lattice. We have also shown that at fixed 
cycle number C, the number of animals of size N is given by the asymptotic 
formula A N ( C  ) = ~ c 2 ~ N  c o, where the amplitude factors cr c for different 
C are simply related to one another. 
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